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Interferometric time-series analysis techniques, which extend the traditional differential radar
interferometry, have demonstrated a strong capability for monitoring ground surface displacement.
Such techniques are able to obtain the temporal evolution of ground deformation within millimeter accu-
racy by using a stack of synthetic aperture radar (SAR) images. In order to minimize decorrelation
between stacked SAR images, the phase reconstruction technique has been developed recently. The main
idea of this technique is to reform phase observations along a SAR stack by taking advantage of a max-
imum likelihood estimator which is defined on the coherence matrix estimated from each target.
However, the phase value of a coherence matrix element might be considerably biased when its corre-
sponding coherence is low. In this case, it will turn to an outlying sample affecting the corresponding
phase reconstruction process. In order to avoid this problem, a new approach is developed in this paper.
This approach considers a coherence matrix element to be an arc in a network. A so-called simplified
coherence network (SCN) is constructed to decrease the negative impact of outlying samples.
Moreover, a pointed iterative strategy is designed to resolve the transformed phase reconstruction prob-
lem defined on a SCN. For validation purposes, the proposed method is applied to 29 real SAR images.
The results demonstrate that the proposed method has an excellent computational efficiency and could
obtain more reliable phase reconstruction solutions compared to the traditional method using phase tri-
angulation algorithm.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

In order to overcome the main drawbacks of the conventional
differential interferometric synthetic aperture radar (DInSAR) tech-
nique (e.g. geometrical/temporal decorrelation, atmospheric phase
delay), the persistent scatterer interferometry (PSI) technique
(Crosetto et al., 2016) has been systematically proposed in the
early 2000s (Ferretti et al., 2000, 2001). Due to its successful appli-
cations in deformation monitoring (Hooper et al., 2004; Peltier
et al., 2010; Ciampalini et al., 2014; Graniczny et al., 2015;
Terranova et al., 2015), it has already attracted increasing attention
in the last decade. The basic idea of such techniques is to separate
interferometric phase components on point-wise targets from a
stack of interferograms by taking advantage of their different
time-spatial behaviors. Such point-wise targets, referred to as per-
manent scatterers (PS), are highly coherent even in long geometri-
cal and temporal baseline spans. For commonly used C-band SAR
data, the spatial density of PS in urban areas can be larger than
100 PS/km2, while in rural areas it is usually less than 10 PS/km2

(Ferretti et al., 2011). It indicates that the output of PSI are mea-
surements on discrete targets distributed in the area covered by
input SAR images. Obviously, if the density of the targets is low,
the measurements might be hard to interpret.

Researchers have made every endeavor to retrieve as many
coherent targets as possible in interferometric applications,
thereby increasing the density of output products. In a PSI applica-
tion, the common master scheme is used to form the correspond-
ing interferogram stack. Inevitably, some of interferograms in the
stack might be severely affected by decorrelation noise, primarily
due to their long temporal and/or spatial baselines. Noting this, a
series of interferometric time-series analysis methods using free
interferometric combination scheme-based stacks are developed
(Mora et al., 2003; Blanco-Sanchez et al., 2008; Liu et al., 2009;
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Dai et al., 2013). They evaluate the decorrelation degree of every
possible interferometric pair and only select the interferograms
with low decorrelation for subsequent analysis, for the sake of
increasing the number of coherent targets. In these methods, the
criterions defined for interferogram decorrelation assessment are
mainly based on temporal and/or spatial baselines. Indeed, the
decorrelation phenomenon depends on many factors (e.g. image
mis-coregistration) (Zhang et al., 2013); consequently, it is hard
to find a uniform interferogram selection strategy for different
applications. To avoid this problem, Guarnieri and Tebaldini
(2008) imported a pre-processing step into interferogram stacking
analysis (In this paper, this step is referred to as phase reconstruc-
tion.). It defines a maximum likelihood estimator (MLE) based on
a so-called coherence matrix which includes spatially averaged
interferometric phase information of all possible input SAR image
pair combinations. By resolving the MLE, the phase value on each
input SAR image are reformed, thereby minimizing target decorre-
lation. In 2011, Ferretti et al. (2011) used statistically homoge-
neous pixels (SHP) to generate coherence matrices. In this way,
the loss of PS during the spatial average operation can be avoided
and the signal-to-noise ratio (SNR) of the phase signal contained in
coherence matrices can be improved. Since then, the phase recon-
struction technique has been increasingly used in interferometric
applications (Lagios et al., 2013; Chaussard et al., 2014; Goel and
Adam, 2014; Paradella et al., 2015).

As pointed out in Ferretti et al. (2011), phase reconstruction can
be considered to be a process that figures out a set of phase values
matching the weighted phase of each off-diagonal element in a
coherence matrix. Indeed, the phase of a coherence matrix element
is an estimate of the ‘‘true” interferometric observation between
the corresponding SAR image pair. When its corresponding coher-
ence is low, such an estimate can be significantly biased, which
may exert a negative impact on the MLE process, resulting in a
decrease in phase reconstruction quality. In this paper, a new
approach is developed in order to address this problem. This
approach converts the MLE to an optimization problem defined
on a network. On the premise that the feasibility and the redun-
dancy is guaranteed, the network is simplified by excluding the arcs
corresponding to low coherence elements. In this way, the influ-
ences of severely biased interferometric phase estimates on phase
reconstruction can be diminished. In addition, a targeted iterative
strategy is designed based on the idea of phase linking (Guarnieri
and Tebaldini, 2008) to resolve the phase reconstruction problem
with respect to the simplified network. On the ground that it pur-
sues an approximate solution rather than an optimized solution,
an extremely high computational efficiency can be achieved.

2. Phase reconstruction problem and its transformation

Suppose that N input SAR images have been coregistered to a
reference image, the observation vector for a given pixel p can be
expressed as:

yðpÞ ¼ y1ðpÞ; y2ðpÞ; . . . ; yNðpÞ½ �T ð1Þ
where T stands for matrix transposition, and ynðpÞ represents the
value of the pixel p on the nth input SAR single look complex
(SLC) image. If it is assumed that neighboring pixels in the input
images are statistically independent, the data coherence matrix C
corresponding to p can be estimated by using the following
equation:

C ¼ 1
jWj

X
p2W

�yðpÞ�yðpÞH ð2Þ

where H represents Hermitian conjugation, and W indicates the set
of samples used for estimation. �yðpÞ is the normalized observation
such that E½jyðpÞj2� ¼ 1 (Cao et al., 2015). Currently, there are two
ways to construct C. Firstly, use all the pixels within a fixed size
window centered at p. Secondly, use p and its corresponding SHPs.
Let Cmn denote the mnth element in C. The phase value of Cmn actu-
ally can be considered to be an estimate of p’s ‘‘true” interferometric
phase with respect to the mth and the nth input SAR images, while
its coherence is given by the absolute value of Cmn.

The maximum likelihood estimator can be expressed as:

bU ¼ argmin
U

fHHðjCj�1 � CÞHg ð3Þ

where � stands for the Hadamard product, C is an N � N symmetric
matrix with respect to the true coherence values of all interferomet-
ric pairs, U ¼ ½h1; h2; . . . ; hN � is the vector containing N unknown
phase observations with respect to input SAR images, and
H ¼ ½ejh1 ; ejh2 ; . . . ; ejhN � is the complex counterpart of U. This is a non-
linear optimization problem. The phase value of a given element in
C corresponds to spatially filtered interferometric observation,
hence the first unknown h1 can be fixed to zero to decrease the
complexity of the solution space. The most widely used method
for phase reconstruction is the phase triangulation algorithm
(PTA). It takes advantage of Broyden–Fletcher–Goldfarb–Shanno
(BFGS) (Press et al., 2002) based optimization algorithms to resolve
this problem, as described in Ferretti et al. (2011) and Tang et al.
(2015). By using this method, an optimal solution can be retrieved.
In practice, as C is inaccessible, its estimate (usually jCj) is used as a
substitute.

Indeed, the above problem can be transformed to an optimiza-
tion problem defined on a network G ¼ ðK;XÞ consisting of a set of
nodes K and a set of arcs X. K consists of N elements with respect
to the unknowns, while X has N � N elements which correspond to
the elements in C. The MLE problem on this network can be stated
as:

bU ¼ argmin
U

X
a2X

xðaÞejuðaÞe�jhHðaÞejhTðaÞ
( )

ð4Þ

where

� hn is the unknown with respect to the node indexed by n.
� a represents an arc belonging to X.
� HðaÞ=TðaÞ is the index of the head/tail node with respect to a.
� uðaÞ is the phase observation defined on a, which is given by
the phase of the matrix element CHðaÞTðaÞ.

� xðaÞ ¼ fjCj�1gHðaÞTðaÞ � jCHðaÞTðaÞj. It is the weight assigned to a.

This network is referred to as a coherence network. Fig. 1(a) exhi-
bits an example coherence network with five nodes. It can be
clearly observed that there are 2N � 1 arcs connecting to each
node.
3. Methodology

In this section, the influence of outlying observations on a phase
reconstruction process is firstly discussed. To mitigate such influ-
ence, a so-called simplified coherence network is constructed by
carefully excluding potential outlying arcs from the coherence net-
work. In order to retrieve a well-posed solution from it, the corre-
sponding construction process ensures the network’s connectivity
and redundancy based on the idea of graph theory. Finally, a tar-
geted strategy is designed to resolve the phase reconstruction
problem defined on the simplified coherence network.



Fig. 1. An example coherence network with 5 nodes (a) and three of its sub-networks: (b) A short baseline style sub-network. (c) A PS-InSAR style sub-network. (d) A sub-
network which can minimize temporal decorrelation.
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3.1. Ill-posedness of a phase reconstruction problem

To some extent, the goal of a phase reconstruction process is to
obtain a vector of solutions U ¼ ½h1; h2; . . . ; hN� from the following
system:

uðm;nÞ ¼ hm � hn þ emn m; n ¼ 1;2; . . . ;N ð5Þ

where emn is the mnth observation noise. As mentioned previously,
uðm; nÞ is an estimate of the true interferometric phase between the
corresponding SAR images. When its coherence value is low, such
an estimate might be seriously biased and become an outlying
observation. Where this is the case, the observation noise e can be
expressed as:

e ¼ uþ e ð6Þ

where u stands for outlier noise and e indicates inlier noise. The
presence of u results in the system defined in Eq. (5) being ill-
posed (Mitra et al., 2013). In general, an ill-posed problem can be
resolved by regularization techniques [e.g. Tikhonov regularization
(Aster et al., 2013)]. Unfortunately, as the interferometric phase
observation uðm; nÞ is only expressed in modulo 2p radians, tradi-
tional regularization techniques cannot be directly applied to a
phase reconstruction problem.

The basic idea of regularization techniques is to retrieve a well-
posed solution by means of introducing pre-defined constraints/
assumptions. It must be noted that the main objective of the phase
reconstruction technique is to reform the phase observations on
distribute scatterers (DS). As most interferometric pairs of a DS
cannot preserve interferometric coherence well, it is reasonable
to assume that the majority of the observations in a phase recon-
struction system contain outlier noise. If low-coherent observa-
tions can be removed as many as possible, the reliability of the
solution should be improved. Consequently, the key problem is
then related to: (1) the construction of a sub-network G0 ¼ ðK;X0Þ
of G by excluding arcs with low coherence, and (2) the resolution
of the corresponding phase reconstruction problem:

bU ¼ argmin
U

X
a2X0

xðaÞejuðaÞe�jhHðaÞejhTðaÞ
( )

ð7Þ
3.2. Sub-network construction

The construction of G0 has to be carefully carried out. Fig. 1(b)
illustrates a sub-network of Fig. 1(a). Clearly, this network is sepa-
rated into two subsets due to the lack of arcs connecting them. This
situation is naturally related to the phase time-series inversion
problem defined on small baseline interferogram stacks, which
can be resolved by applying the singular value decomposition
(SVD) algorithm (Berardino et al., 2002). Unfortunately, as the opti-
mization problem in Eq. (6) is defined on wrapped phase rather
than unambiguous phase, the SVD is not valid anymore. In other
words, it is not able to derive a feasible solution from this network.

Fig. 1(c) and (d) present two feasible networks with N � 1 arcs.
In such networks, each node only connects one arc, which indicates
that there are no redundant observations for the estimation.
Indeed, using the solution from the network depicted by Fig. 1(c)
for interferogram stacking analysis is equivalent to directly apply-
ing PSI on spatially filtered interferometric phase. In this case, the
phase reconstruction process is meaningless as it does not sup-
press decorrelation at all. Fig. 1(d) demonstrates a sub-network
from which a solution can be easily derived by a simple phase inte-
gration process. When all nodes are arranged in image acquisition
order, temporal decorrelation can be minimized. However, as the
physical mechanism causing decorrelation is complex (Bamler
and Hartl, 1998), there is room to further improve the effect of
phase reconstruction. To meet this goal, redundant arcs are
required to be added into the network.
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Based on the above discussion, the following strategy is devel-
oped to construct G0.

(1) Initialize the network G0. Add N nodes into G0. Assign a con-

nection tag Vn ¼ 0 and an initial phase value ĥð0Þn ¼ 0 to the
nth node, where n ¼ 1;2; . . .N.

(2) Sort every element in jCj in descending order. Store the
result into an array L. Let L½i� denote the ith element of L
and set i ¼ 1. Note that jCj is a symmetric matrix. In this
study, only the off-diagonal elements of jCj’s lower triangu-
lar part are used for sorting, in order to improve computa-
tional efficiency.

(3) Suppose that jCjmn is the element corresponding to L½i�. Cre-
ate two arcs a1 and a2. Let
Hða1Þ ¼ m; Tða1Þ ¼ n; uða1Þ ¼ \Cmn;

xða1Þ ¼ fjCj�1gmn � jCjmn

ð8Þ

Hða2Þ ¼ n; Tða2Þ ¼ m; uða2Þ ¼ �\Cmn;

xða2Þ ¼ fjCj�1gnm � jCjmn

ð9Þ

Add a1 and a2 into X0. If i ¼ 1, set
(4)

Vm ¼ 1;Vn ¼ 1; ĥð0Þm ¼ \ej\Cmn , and go to (5).

If Vm ¼ 1 and Vn ¼ 0, set Vn ¼ 1 and ĥð0Þn ¼ \ejðĥð0Þm �\CmnÞ. If

Vn ¼ 1 and Vm ¼ 0, set Vm ¼ 1 and ĥð0Þm ¼ \ejðĥð0Þn þ\CmnÞ. Let
i ¼ iþ 1.

(5) If
XN
n¼1

Vn ¼ N ð10Þ

go to (6). Otherwise, go to (3).

(6) Let OðnÞ denote a set including all arcs starting from n. If the

following expression does not hold, go to (3).
jOðnÞj P F; n ¼ 1;2; . . . ;N ð11Þ
where F is a predefined redundancy factor.
(7) G0 is successfully constructed. Exit. The vectorbUð0Þ ¼ ĥð0Þ1 ; ĥð0Þ2 ; . . . ; ĥð0ÞN

h i
will be used to initialize the subse-

quent optimization process.

Eq. (9) guarantees that a feasible solution can be derived from
the resulting network. In this paper, such a network is referred to
as a simplified coherence network (SCN). It must be noted that the
predefined redundancy factor F has to be carefully assigned. If F
is too small, the redundancy of the SCN cannot be ensured. On
the other hand, if F is too large, unnecessary computational
resources are required for the subsequent optimization process.
More significantly, outlying interferometric phase observations
might be introduced, which could decrease the accuracy of the
resulting estimation. Empirically, a satisfied solution can be
derived from a SCN constructed using F ¼ 2 or F ¼ 3 .

3.3. Phase reconstruction resolution

Indeed, the phase reconstruction problem defined on a SCN can
be resolved by utilizing BFGS based optimization methods as well.
However, such methods are not adopted in this study due to the
following considerations. (1) The BFGS based methods require
the first-order partial derivatives of the phase reconstruction
objective function. The form of such derivatives is verbose. (2) As
the dimension of the solution space of a phase reconstruction
problem is large (Tens or even hundreds of input SAR images are
usually used in an interferogram stacking application.), the compu-
tational costs of BFGS based methods could be extremely high, as
pointed out in Ferretti et al. (2011). (3) As estimated coherence val-
ues rather than true coherence values are used in a phase recon-
struction process, there is no reason to state that the optimal
solution derived by BFGS based methods must provide a correct
phase reconstruction. Thus, a good approximation may generally
be as accurate as an exact solution. Based on the idea of phase link-
ing, the iterative process below is designed to estimate the phase
vector U.

ĥðqÞn ¼
X
a2OðnÞ

jxðaÞjejuðaÞejĥ
ðq�1Þ
TðaÞ ; n ¼ 1;2; . . . ;N ð12Þ

where q is the iteration ID. There are primarily two differences
between this process and the phase linking method. (1) The com-
plex conjugate multiplication operation is only performed on the
arcs of SCN rather than the full coherence matrix. A higher compu-
tational efficiency can be hence achieved in each iteration step. (2)
The constraint h0 ¼ 0 is removed, which can accelerate the conver-
gence of the iteration defined on a SCN.

It must be pointed out that the initial values ĥð0Þ1 ; ĥð0Þ2 ; . . . ; ĥð0ÞN

invoking the iteration are generated during the construction of

SCN. Indeed, each ĥð0Þn is obtained based on its corresponding inter-
ferometric phase with the highest coherence. Such a strategy may
further speed up the iteration process. Besides, on the ground that
the above process aims to retrieve an approximate solution, inter-
ferometric coherence values can be directly used as weights (Cao
et al., 2015). In this case, matrix inversion operations can be
avoided, thereby reducing computational workload. Moreover, a
special data structure is designed and implemented for storing
SCN, which is a modified version of adjacency list. Based on it,
the information on each arc can be extracted efficiently. The dis-
cussion of data structure is beyond the scope of this paper. The
reader is referred to Drozdek (2012) and Marli (2009) for more
details.

4. Experimental results

For validation purposes the proposed SCN approach was com-
pared with the most commonly used PTA method using both sim-
ulated data and real data. The limited-memory BFGS solver
embedded in the NLopt package was used for PTA’s optimization
processes. NLopt is a free and open-source library for nonlinear
optimization. It can be downloaded from http://abinitio.mit.edu/
wiki/index.php/NLopt. In this study, all algorithms were imple-
mented in C++ for efficiency concerns.

4.1. Simulated data

The simulated data generation process was based on typical
C-band platform configurations (e.g. wavelength: 5.6 cm, repeat
cycle: 35 days). The number of input images was set to
N ¼ 20;21; . . . . . . ;80. The number of SHPs used for coherence
matrix construction was set to S ¼ 30;60;90, respectively. For a
given N and S, a group of coherence matrices of 1000 points were
generated. For a given point p, its ‘‘true” SAR phase observation
of the nth acquisition was set to

ynðpÞ ¼ 0 n ¼ 1
ynðpÞ ¼ �4p

kR sin h � Bn
? � Dhþ �4p

k � Tn � Dd n ¼ 2;3; . . .N

(
ð13Þ

where k; h and R are the radar wavelength, the local incidence angle,
and the distance between target and sensor, respectively; Bn

? is the
perpendicular baseline between the 1st and the nth SAR acquisi-
tions, which was randomly generated by using a standard deviation
rperp ¼ 200 m; Tn is the temporal baseline, which was set to

http://abinitio.mit.edu/wiki/index.php/NLopt
http://abinitio.mit.edu/wiki/index.php/NLopt
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ðn� 1Þ � 35 days; Dh and Dd are the randomly generated digital
evaluation model (DEM) error and deformation rate (rDEM ¼ 20 m,
rdefo ¼ 10 mm), respectively. For the sake of simplicity, only the
temporal decorrelation noise was introduced and the interferomet-
ric coherence was directly used as phase reconstruction weights.
For a given SHP, the temporal decorrelation noise on the nth acqui-
sition was given by en ¼ en�1 þ eT , where eT is the randomly gener-
ated noise. Its corresponding standard deviation was set to 25�. A
typical coherence matrix generated via this process is shown in
Fig. 2.

Fig. 3 represents the execution times of the two methods under
different configurations. It can be clearly observed that the execu-
tion efficiency of each method is mainly affected by the number of
input images. The PTA method exhibits a super non-linear compu-
tational complexity. On the contrary, the computational cost of the
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proposed SCN method only varies slightly as the number of input
images goes up. When the number of input image achieves 80, at
least 52 s is required by the PTA method, while the SCN method
only requires approximately 1 s. Apparently, the proposed SCN
method is far superior to the PTA method in the aspect of compu-
tational performance.

In order to evaluate the reliability of the both methods, the
ensemble phase coherence (EPC) corresponding to each phase
reconstruction solution was calculated, which is given by:

cðpÞ ¼
XN
n¼1

ðej�~ynðpÞ � e�j�ynðpÞÞ
�����

�����
,

N ð14Þ

where ~ynðpÞ indicates p’s estimated phase value on the nth acquisi-
tion. EPC is ranging from 0 to 1. The higher the EPC is, the more
accurate the resulting solution should be. For each group of data,
an average EPC (AEPC) was calculated. The distribution of AEPC of
the two methods is illustrated in Fig. 4. Clearly, the AEPC of each
method decreases as the number of images increases. Moreover, a
lower decreasing rate can be obtained when a larger SHP number
is used for coherence matrix generation. Overall, the AEPC of the
proposed SCN method is greater than that of the PTA method. When
the number of input images is small, the AEPC values of the both
methods are close to each other. The AEPC difference between the
both methods becomes larger and larger when the number of input
images arises. Consequently, it can be thought that the proposed
method is capable of suppressing the influence of outlying observa-
tions effectively, especially in the case that the number of input
images is large.

4.2. Real data

29 real SAR images were used to further validate the proposed
SCN method. These images were acquired over the Kangxiwar
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Fig. 6. Two differential interferograms with respect to the image acquired in August 20,
35 days and 190 m. For the sake of clarity, (a) and (b) are referred to as ‘‘the low-cohere
respectively.
region, Shinjang Uyghur Aptonom Rayoni, China, by the advanced
synthetic aperture radar (ASAR) sensor on board the European
space agencys environmental satellite (EnviSAT). Since this region
is covered by rough terrains and is far away from human activities,
the PS density is extremely low, which is conductive to a better
representation of the effect of phase reconstruction. The image
acquired on August 20, 2005 was firstly selected as the master
image and cropped to a relatively small size (2500 pixels in azi-
muth direction 1200 pixels in range direction). The other 28
images were cautiously registered and resampled with respect to
it. Subsequently, the 3-arc seconds DEM provided by the shuttle
radar topography mission (SRTM) was registered to the master
image. Based on the registered DEM and the precise orbit state vec-
tors from the Doppler orbitography and radio-positioning inte-
grated by satellite instrument (DORIS), the topographic phase
contributions to the registered images were removed, respectively.
The average magnitude map of the registered images is reported in
Fig. 5. It can be clearly observed that the study area is dominated
by rugged mountains which cause strong layover effect. Fig. 6 illus-
trates two differential interferograms with respect to the master
image. The interferometric phase signals in the first one (Fig. 6
(a)) are completely decorrelated due to the long spans of the tem-
poral and the perpendicular baselines. On the other hand, except
for layover areas, the interferometric coherence of the second
one (Fig. 6(b)) is generally preserved, as it has the shortest tempo-
ral baseline (1 repeat cycle) and a relatively small perpendicular
baseline. In addition, a linear trend in range direction can be evi-
dently seen, which primarily stems from orbital errors. For the sake
of clarity, these two interferograms are referred to as ‘‘the low-
coherent (LC) interferogram” and ‘‘the highly-coherent (HC) inter-
ferogram” in the subsequent discussion, respectively.

Following the idea presented in Ferretti et al. (2011), a SHP
identification process was carried out for each pixel by using a
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Fig. 8. (a) and (b) The filtered LC/HC interferogram overlaid on the average magnitude map. (c) and (d) The reconstructed LC/HC interferogram based on the PTA method. (e)
and (f) The reconstructed LC/HC interferogram based on the proposed SCN method. In order to illustrate phase reconstruction results more intuitively, only the results on the
DS candidates whose average coherence values are larger than 0.2 are shown.
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window size of 51 � 13. When the number of SHPs of a given pixel
was greater than 20, it was recognized as a DS candidate. The
coherence matrix of each DS candidate was constructed based on
its SHP family, which was used for subsequently phase reconstruc-
tion operations. Overall, 2,905,944 DS candidates were obtained.
Non-DS candidates were neglected, as the goal of this paper is to
improve the performance of phase reconstruction. In order to exhi-
bit the overall interferometric coherence of the input data, an aver-
age coherence map was generated based on the off-diagonal
elements of each DS candidate’s coherence matrix, as shown in
Fig. 7. It can be observed that most regions are severely affected
by the decorrelation phenomenon. Such regions are primarily dis-
tributed in upper mountains where the altitude can be up to
6200 m. The presence of unstable snow and ice should be the chief
culprit causing decorrelation.

Both the proposed SCN method and the PTA method were
applied to the coherence matrix of each DS candidate. In total,
the SCN method and the PTA method successfully derived phase
reconstruction results on 2,746,212 and 2,898,941 DS candidates,
respectively. It implies that the success rate of the SCN method is
slightly lower than that of the PTA method. However, as discussed
later, almost all failed SCN estimations occurs on the DS candidates
located in highly decorrelated areas. In such areas, it is nearly
impossible to obtain correct phase reconstruction results. There-
fore, such failures would not influence the overall effect of phase
reconstruction. The total computational time needed by the PTA
method was around 523 min, while the SCN method only required
approximately 24 min. Evidently, the proposed SCN method has a
much higher computational efficiency than the PTA method.

Fig. 8(a) and (b) are the SHP-based spatial filtered versions of
the LC and the HC interferograms, respectively. These two interfer-
ograms actually can be considered to be generated based on the
phase reconstruction results from a fixed network similar to
Fig. 1(c). It must be noted that the goal of the phase reconstruction
technique is to reshape the phase observations in areas with mod-
erate coherence. Therefore, in order to illustrate the effect of phase
reconstruction more intuitively, only the results on the DS candi-
dates whose average coherence values are larger than 0.2 are
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shown. As expected, the interferometric signals contained in the
filtered HC interferogram are highly correlated. On the contrary,
it is hard to extract any valid interferometric information from
the filtered LC interferogram. By using the phase reconstruction
solutions from the PTA method, a new LC/HC interferogram was
generated, as presented in Fig. 8(c)/(d). No manifest difference
between the PTA HC interferogram and the filtered HC interfero-
gram can be observed, which demonstrates that the phase recon-
struction technique preserves the interferometric characteristics
of highly correlated pairs. Unlike the filtered LC interferogram,
the PTA’s counterpart consists of ‘‘low-pass” pattern interferomet-
ric signals, implying that decorrelation noise is effectively sup-
pressed by the phase reconstruction technique. The SCN LC and
the SCN HC interferograms are indicated in Fig. 8(e) and (f), respec-
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Fig. 10. (a) The interferometric signals extracted from the filtered HC interferogram over
(c) From the reconstructed HC interferogram of SCN.
tively. Overall, they are comparable to the PTA’s counterparts.
Hence, the effectiveness of the proposed SCN method is validated.

For a better comparison between the SCN and the PTA methods,
their corresponding LC and HC interferometric results over two
representative areas (marked as A and B in Fig. 8) were extracted,
respectively. Fig. 9 shows the PTA LC and the SCN LC interferomet-
ric signals in area A. It can be clearly observed that the SCN result
(Fig. 9(b)) contains less high-frequency signals compared to the
PTA result (Fig. 9(a)). To some extent, a phase reconstruction oper-
ation can be considered to be a spatial filter in temporal domain. As
the goal of such a filter is to suppress high-frequency signals, the
SCN solution is expected be closer to the correct one. The filtered,
the PTA and the SCN HC interferometric signals in area B are illus-
trated in Fig. 10. The SCN HC result (Fig. 10(c)) is remarkably sim-
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ilar to the filtered HC result (Fig. 10(a)). On the other hand, some
abrupt signals are clearly observed in the PTA result presented in
Fig. 10(b). Since the HC interferogram preserves a good coherence,
a reconstructed HC interferogram is expected to be close to the fil-
tered HC interferogram. In this sense, the SCN solution is superior
to the PTA solution.

To better examine the performance of the proposed SCN
method, a maximum iteration number of 1000 was used and the
iteration number required for resolving the SCN defined on each
DS candidate was recorded. An iteration number map can be hence
generated, as shown in Fig. 11. It can be observed that the pro-
posed method converges successfully on most of DS candidates
and the failed SCN estimations are only located in highly decorre-
lated areas. Moreover, this map is highly correlated to the average
coherence map shown in Fig. 7. In the areas where interferometric
coherence is generally preserved, the proposed SCN method can
converge within 30 iterations. Therefore, when a relatively smaller
maximum iteration number is used, the proposed method is still
able to effectively complete the phase reconstruction. Where this
is the case, the execution time required by the proposed SCN
method can be further reduced.

5. Concluding remarks

In this paper, a new phase reconstruction approach based on
simplified coherence network is proposed. With the use of the
SCN, the adverse impacts of seriously biased coherence matrix ele-
ments on phase reconstruction can be reduced. A targeted iterative
strategy for solving the SCN phase reconstruction problem is
designed and implemented as well. Since it aims to derive an
approximate solution rather than the optimal one, its computa-
tional efficiency is remarkably high. By applying the proposed
method to real SAR data, its excellent performance is confirmed.
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