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3-D coseismic displacement field of the 2005 Kashmir earthquake inferred
from satellite radar imagery
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We use radar amplitude images acquired by the ENVISAT/ASAR sensor to measure the coseismic deformation
of the 8 October 2005 Kashmir earthquake. We use the offset images to constrain the fault trace, which is in good
agreement with field investigations and aftershock distribution. We infer a complete 3-D surface displacement
field of the Kashmir earthquake using the offset measurements derived from both descending and ascending
pairs of SAR images. The peak-to-peak offsets are up to (3.9, 3.6, 4.1) m in the east, north, and up directions
respectively, i.e., 2.9 and 4.1 m along and across the fault assuming striking 325◦. We model the coseismic
displacements using a four-segment dislocation model in a homogeneous elastic half-space. We first estimate the
source parameters using a uniform slip model. Then we fix the optimal geometric parameters and solve for the
slip distribution using a bounded variable least-squares (BVLS) method. The resultant maximum slip is about 9.0
m at depth of 4–8 km beneath Muzaffarabad. We find a scalar moment of 2.34 × 1020 N m (Mw7.55), of which
almost 82% is released in the uppermost 10 km.
Key words: Kashmir earthquake, offset, 3-D displacement, slip distribution.

1. Introduction
The 8 October 2005 Kashmir earthquake occurred on the

Muzaffarabad fault where the Indian plate subducts under
the Eurasian plate and is moving northward at a rate of
about 40 mm/a. The collision between these two continen-
tal plates fractured the northern boundary of Indian plate
into several slices beneath the Kashmir Basin, known as
the Indus-Kohistan seismic zone (IKSZ) (Seeber and Arm-
bruster, 1979). IKSZ is a seismically active zone and a
Mw > 8 earthquake was predicted in this area through pre-
vious studies before the occurrence of the Kashmir earth-
quake (Bilham et al., 2001; Bilham and Wallace, 2005).
Figure 1 shows the topographic setting and radar imaging
geometry for the Kashmir earthquake. The moment magni-
tude of the major shock is about Mw 7.6, with its epicenter
at (34.476◦N, 73.577◦E), about 19 km NE of Muzaffarabad,
and 105 km NNE of Islamabad, Pakistan (U.S. Geologi-
cal Survey Earthquake Hazards Program, 2005). More than
79,000 people were killed, 83,000 injured, and 2.5 million
left homeless in the disaster. It is the largest devastating
event in the Kashmir area over the past 100 years.

Parsons et al. (2006) analyzed the coseismic static stress
changes associated with the Kashmir earthquake from tele-
seismic body waveforms (P-wave). The remote sensing
techniques, e.g. interferometric synthetic aperture radar (In-
SAR), play an important role for the prompt analysis of the
earthquake. Fujiwara et al. (2006) generated a range offset
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(RO) map with ENVISAT/ASAR data from a descending
orbit to identify the fault trace, and estimated the source pa-
rameters using a uniform slip dislocation model. Wright
and Pathier (2005) also identified the fault trace using the
RO map 1 month after the seismic event. In this study, we
will infer a complete 3-D displacement field of the Kashmir
earthquake using more radar images from both descending
and ascending orbits. Based on the amplitude offset mea-
surements, we will estimate the slip distribution on the fault
plane for the earthquake.

2. Data Analysis
2.1 Azimuth and range offsets of radar amplitude im-

ages
To support the studies on the devastating Kashmir earth-

quake, ESA released 11 scenes of radar images acquired
by the ENVISAT/ASAR sensor just 2 weeks after the seis-
mic event. Among them, eight scenes were acquired from
a descending orbit and three scenes from an ascending or-
bit. For either orbit, only one image was acquired after the
earthquake. Table 1 is the list of the interferometric pairs
used in this study.

We process the radar data using the two-pass InSAR
method (Massonnet et al., 1993). Although only spanning a
time interval of 35 days for IP1 and IP2, they are still almost
completely decorrelated in the epicentral area. The decor-
relation may be ascribed to large-scale surface fissuring and
landslides after the major shock besides the rough terrain
and the long perpendicular baselines.

In contrast to the interferometric approach, the azimuth
and range offset approach has at least three advantages: (1)
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Fig. 1. Shaded relief map of the epicentral area of the Kashmir earthquake.
Data shown are 3 arc-second DEM data from the SRTM (Farr and Ko-
brick, 2000). Pre-existing fault locations are shown with a dashed line
(Kumahara and Nakata, 2006). Solid squares denote ENVISAT/ASAR
scenes from the descending (track 2463, frames 2907 and 2925) and
the ascending (track 6499, frame 675) orbits. White arrows indicate the
satellite look direction (ground to satellite). Islamabad (IS) and Muzaf-
farabad (MU) are indicated as black triangles. The circles in red-white
color denote the Harvard CMT solution of the major event (Mw 7.6).

Table 1. Interferometric pairs used in this study.

Direction Interferometric Pair B⊥a T b

(year/month/day) (m) (day)

DSCc 20050709–20051022 −456 105

DSC 20050813–20051022 606 70

DSC 20050917–20051022 (IP1) 297 35

ASCd 20050815–20051024 990 70

ASC 20050919–20051024 (IP2) 296 35
a B⊥: perpendicular baseline bT : temporal baseline cDSC: descending, track
2463, frames 2907 and 2925 dASC: ascending, track 6499, frame 675

it is less sensitive to coherence, (2) phase unwrapping is not
required, and (3) displacements near the epicentral area are
obtainable, so that the fault location can be clearly identified
(e.g. Peltzer et al., 1999). What’s more, offset estimation of
ASAR data can even achieve accuracies of up to 1/50 pixel
in range and azimuth directions, i.e., 14 cm and 7.5 cm,
respectively (Werner et al., 2005). Therefore, it is useful
for monitoring large magnitude deformation (e.g. Michel et
al., 1999a,b; Tobita et al., 2001).

In this study, we first estimate range and azimuth offsets
for each grid with 6 arc-second spacing using the intensity
cross-correlation method. A quadratic polynomial trend is
then removed from the estimations in each offset image in
order to mitigate the systematic offset due to orbit errors.
Finally, the offset value on the reference point is subtracted
from all estimations in each offset image. Figure 2 shows
the resultant range and azimuth offset images for IP1 and
IP2 with 6 arc-second spacing. The descending azimuth
offset (AZO) image shows positive values on the NE side
of the fault; in contrast, the ascending one shows negative
values on this side. The difference is mainly due to the dif-
ferent flight direction of the satellite (see arrows in Fig. 1).
We can clearly identify the seismic fault location from these

images. It is denoted as a solid blue line in Fig. 2. We
find that the identified fault is in good agreement with the
field investigations denoted as dashed red lines (Kumahara
and Nakata, 2006) and the aftershock distribution denoted
as small open circles in Fig. 2.

Figure 2(e)–(f) show the profiles averaged in a 20-km
bin along line A. The profiles show a good agreement of
the rupture location between descending and ascending off-
set images. The peak-to-peak offsets are about 3.9 m in
range and 4.8 m in the azimuth direction in the descending
images, whereas, they are about 4.8 m and 3.9 m, respec-
tively, in the ascending images. The magnitude differences
are mainly due to the different flight directions of the satel-
lite in the descending and ascending orbits.
2.2 3-D offset maps

Since we have obtained both RO and AZO images from
different satellite flight directions, the 3-D displacement
field of the Kashmir earthquake can be determined. We fol-
low the method described by Fialko et al. (2001) and Wright
et al. (2004). Suppose that the vector u = [ue un uu]T

represents three orthogonal components of displacements
in the local coordinate system (e.g. east, north, and up),
d = [dr daz]T represents displacements in range and az-
imuth directions. If they belong to the same reference
frame, the transformation formula from u to d can be ex-
pressed as

d = s · u, (1)

where s is the unit vector.

s =
[

cos α sin θ − sin α sin θ − cos θ

sin α cos α 0

]
, (2)

where α is the azimuth of the satellite heading vector (pos-
itive clockwise from the north), and θ is the radar inci-
dence angle at the reflection point. Customarily we define
upwards as positive for uu , whereas increases in the radar
range are positive for dr . This is the reason that the signs in
Eq. 2 are different from Fialko et al. (2001).

Given displacements acquired from no less than three
directions in different planes, a complete 3-D displacement
field can be inverted by the least-squares method,

u = (sT Ps)−1sT Pd, (3)

where P is the weight matrix for the observations.
Based on the above model, the 3-D displacement field

for the Kashmir earthquake is inverted from four RO and
AZO images obtained previously (Fig. 3(a)–(c)). Profiles
for Line A in the ENU directions are obtained using the
same method as that for Fig. 2. Furthermore, they are
projected along and across the fault given striking 325◦.
The peak-to-peak values are about (3.9, 3.6, 4.1) m in the
ENU directions, respectively, and they are about 2.9 m
and 4.1 m along and across the fault, respectively. Our
observations are in agreement with earlier results indicating
the oblique (reverse and right-lateral) sense of motion on
the Muzaffarabad fault (Nakata et al., 1991).

3. Modeling
3.1 Data reduction and weighting

The four pairs of displacement maps yield millions of
data points, so that it is impractical to invert using all the
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Fig. 2. (a) RO and (b) AZO images from the descending orbit (c) RO and (d) AZO images from the ascending orbit (e) the profiles for Line A from
the descending orbit (f) The profiles for Line A from the ascending orbit. The solid blue line in (a)–(d) represents the fault identified from the offset
images. The dashed red line in (a)–(d) represents the seismic fault from field investigations (Kumahara and Nakata, 2006). The numbers in the white
rectangles on the blue line denote the segment number for fault modeling. The small open circles denote the aftershocks (from Harvard CMT). The
red cross located at (34◦N, 73◦33′E) denotes the reference point.

Fig. 3. Complete 3-D coseismic displacement field of the Kashmir earthquake. (a)–(c) Displacements of east, north and up components. (d)–(f) Profiles
for Line A in the east, north, and up directions, and their projections along and across the fault given striking 325◦.

data. We reduce the data using a quadtree algorithm (e.g.
Jónsson et al., 2002; Simons et al., 2002). The algorithm
divides the whole image into quadrants and then calculates
the root-mean-square (RMS) in each quadrant. If the RMS
exceeds a given threshold, e.g. 0.2 pixels in this study, the
quadrant is further subdivided into four. Otherwise, the
average value in the quadrant is the output. This process

is recursively executed until the size of the quadrant equals
to a given minimum. In this study, we only use the data in
a 110 × 90-km box around the fault, and the pixels closer
than 1 km to the fault are eliminated to take into account
uncertainties on the fault location (Lasserre et al., 2005).
The ratio of valid pixels in a quadrant must be higher than a
given level, e.g., 0.8 in this study, to deal with the irregular
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Table 2. Number of data points, weight ratio, RMS and moment

No. Data Weight σ a M0
b

Points Ratio

(%) (cm) (Nm)

IP1(RO) 507 36 61.1

IP1(AZO) 743 36 65.4 -

IP2(RO) 475 18 72.1

IP2(AZO) 588 10 72.9

total 2313 100 65.9 2.34 × 1020

aσ : RMS values for the distributed slip model. b M0: scalar moments for the
distributed slip model.

boundaries in the deformation maps (Masterlark and Lu,
2004). Using the above strategies, only 2313 data points
are left in the down-sampled data sets (Table 2).

To ensure a balanced contribution of different data sets in
a joint inversion, reasonable weights should be assigned to
the observations. In this study, we use similar weighting
strategies as Fialko (2004). Within a particular data set,
the weight ratio of an individual point is proportional to
the quadrant size during down-sampling. Among the data
sets, a ratio is given to each data set to keep a balance
of residuals. The resultant weight for each data point is
expressed in Eq. (4), and the sum of weights equals unity,
i.e., Eq. (5).

P j
i = β j

1/σ 2
i

N j∑
k=1

1/σ 2
k

= β j
ni

N j∑
k=1

nk

(4)

N f∑
j=1

N j∑
i=1

P j
i = 1 (5)

where P j
i is the weight for the i th data point in the j th

data set; N j is the number of the data points in the j th
data set; σ 2 is the variance of the data points; n is the
quadrant size from quadtree sampling; β j is the weight ratio
for the j th data set; N f is the number of data sets. In
this study, we set the ratio 36% to the descending RO and
AZO images, 18% and 10% to the ascending AZO and RO
images, respectively.
3.2 Fault slip distribution

We first estimate the fault geometry using a uniform slip
model in a homogeneous elastic half-space (Okada, 1985).
We find that four fault segments can reasonably represent
the fault trace (see Fig. 2 for each segment indication). The
surface displacements are nonlinear functions of the fault
geometry, so we use a genetic algorithm (GA) to determine
the optimal model which minimizes the weighted misfits
between the observations and the modeled values (Carroll,
1996). We assume the top edges intersect the surface. The
rake is constrained between 90◦ and 180◦ for right-lateral
strike slip (Aki and Richards, 2002). The other parameters
are left free during inversion. The inverted source parame-
ters are listed in Table 3. The maximum slip is 6.0 m and
occurred on the third segment NW of the epicenter. It is
a bit smaller than that in Fujiwara et al. (2006) who only
used the descending range changes. We have also obtained

Fig. 4. Tradeoff between weighted misfit and solution roughness
for the distributed slip model. Stars indicate the smoothing factors
(κ = 0.10, 0.18, 0.30) used in the inversions shown in Fig. 5.

similar results while only using the descending RO image.
We believe it is more reliable to model the fault with both
descending and ascending images since the slip really oc-
curred in a 3-D space. The average strike is 328◦ and dip
is 34◦, similar to Fujiwara et al. (2006) and Parsons et al.
(2006). The resultant moment tensor M0 is 2.19 × 1020N m
(Mw 7.53), assuming Lamé constants µ = λ = 33 GPa.

To obtain slip distribution, the width of the fault is ex-
tended to 30 km, and the length is increased by 10 km for
segments 1 and 4 to account for the whole fault plane in the
model. The fault plane is then discretized into 310 patches
each with a size of 3 × 3 km. We fix the geometric param-
eters from the uniform slip model and solve for the optimal
slip on each patch. The surface displacements are then the
linear functions of dislocations. To determine such a slip
model, we set up the following equations:

[
d
0

]
=

[
G H

κ2∇2 0

] [
m
t

]
(6)

where d is a vector containing the observed displacements;
G is a matrix containing Green’s functions (e.g., Okada,
1985); ∇2 is a second-order finite difference approximation
of the Laplacian operator and the Lagrange multiplier κ2

that determine the weight of smoothing (Harris and Segall,
1987); H is a matrix containing the coordinates of the data
points; t is a vector containing the bilinear ramp coefficients
to correct the orbit errors.

We solve the system of Eq. 6 using a bounded variable
least-squares (BVLS) method (Stark and Parker, 1995),
which can seek the bounded variables to minimize the ob-
jective function (Eq. (7)).

� = ‖W (d − Gm − Ht) ‖L2 + ‖κ2∇2m‖L2 (7)

where W is the matrix from Cholesky decomposition of
weight matrix P, i.e., WTW = P. In this study, we con-
strain the right-lateral strike-slip components to the range
from 0 to 9 m and the dip-slip components from 0 to 10 m.

Because the best-fit slip distribution depends on the
smoothing factor κ2, we show the tradeoff between
weighted misfit and solution roughness in Fig. 4 (Jónsson
et al., 2002). We pick the model with κ = 0.18 as a result
because of its good compatibility between weighted misfit
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Table 3. Uniform slip model inverted from the offset imagesa.

No. Slip x0 y0 Length Width Strike Dip Rake

(m) (km) (km) (km) (km) (◦) (◦) (◦)

1 3.8 −41.8 31.0 19.7 10 333 23 92

2 5.5 −25.3 20.3 33.3 15 326 35 91

3 6.0 0.9 −0.3 9.5 23 315 42 112

4 5.4 8.3 −6.3 16.0 21 338 35 115

aCoordinates x0, y0 correspond to the top-right corner of each segment. The top edges are assumed to inter-
sect the surface. Origin is taken to be at the epicenter of the Kashmir earthquake (34.37N, 73.47E) (Harvard CMT).

Fig. 5. Slip distribution for different smoothing factors: (a) κ = 0.10, (b) κ = 0.18, (c) κ = 0.30. We pick the second as the resultant model because of
its good compatibility between weighted misfit and solution roughness. The numbers between the triangles in (a) indicate the segments. The white
star denotes the epicenter from Harvard CMT solution.

and solution roughness (Fig. 5). The scalar moment does
not change too much for different smoothing factors, which
ranges 2.3∼2.5×1020 N m from Fig. 4. We find the re-
sultant moment of 2.34 × 1020 N m (Mw 7.55), which is
similar to the Harvard CMT solution (2.94×1020 N m). Up
to 82% of the energy is released in the uppermost 10 km. In
Fig. 5(b), we find a maximum slip of 9.0 m at depth of 4–8
km, i.e. ∼6–12 km along dip. Fault slip focused on the sec-
ond and third segments in the uppermost 10 km. The main
asperity in Fig. 5(b) located almost exactly beneath Muzaf-
farabad, above the hypocenter from the Harvard CMT solu-
tion.

In general, the slip distribution is in agreement with the
result derived by Avouac et al. (2006) from the joint inver-
sion of seismic waveforms and offset measurements with
ASTER images. The difference is that their model shows
more slip on the SE side of Muzaffarabad than that on the

NW side. In particular, almost all slip focuses on the SE
side derived from the seismic waveforms data alone in their
model. Since the maximum displacement from the ASTER
measurements locates on the NW side, the inversion only
using ASTER measurements may show a similar pattern to
our model. The slip distribution pattern is also consistent
with the one described in Pathier et al. (2006), who used a
similar method to this study. The maximum slip (9.6 m) and
moment tensor (3.36×1020 N m) in Pathier et al. (2006) are
larger than this study. The difference may be caused by the
different fault geometry used in the inversion: they used a
one-segment fault model, which may not represent the real
fault trace entirely; in contrast, we use a four-segment fault
model, which may have a better result fitting the real fault
trace. Figure 6 shows the synthetic displacements and resid-
uals. The RMS for each data set is listed in Table 2, and the
total RMS is 65.9 cm.
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Fig. 6. Synthetic (a) RO and (b) AZO from the descending orbit, synthetic (c) RO and (d) AZO from the ascending orbit (e) RO and (f) AZO residuals
from the descending orbit (g) RO and (h) AZO residuals from the ascending orbit. All the synthetic displacements are deduced from the distributed
slip model in Fig. 5b.

4. Discussion and conclusions
The 2005 Kashmir earthquake is the latest devastating

seismic event that has occurred in the Himalayan zone. Be-
cause of the steep topography in the epicentral area and
the long baselines, it is almost impossible to obtain an
ideal interferogram. Nevertheless we processed the EN-
VISAT/ASAR data only 1 month after the event and ob-
tained the azimuth and range offset images. The location
of the fault was identified from the offset images. It is in
good agreement with the field investigations and the after-
shock distribution. This capability of SAR offset images
for detecting seismic fault locations may play an important
role for the near real-time estimation of damaged areas and
prompt rescue in the future.

We have inferred a complete 3-D surface displacement
field for the Kashmir earthquake using range and azimuth
offset images acquired from descending and ascending
pairs of SAR images. The peak-to-peak surface displace-
ment is up to 4.1 m across the fault, 2.9 m along the fault,
and 4.1 m upwards. In the future, the complete 3-D defor-
mation monitoring using InSAR and its byproducts may be
a routine procedure by combination of data acquired from
multi-squint mode and different sensors.

We have modeled the fault slip distribution in a homo-
geneous elastic half-space. The maximum slip is 9.0 m at
a depth of 4–8 km beneath Muzaffarabad. The estimated
geodetic moment is 2.34 × 1020 N m (Mw7.55). It is still
not clear whether the Kashmir earthquake is just an aus-
pice for large earthquake sequences in the Himalayan zone
(Bilham et al., 2001; Bilham and Wallace, 2005). More at-
tention should be paid for the monitoring and study in this
area.
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